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Abstract:  The buckling analysis of single layered orthotropic and cross ply laminated composite plate using 

trigonometric higher order shear deformation theory and meshless method based on the finite point formulation using 

multiquadric radial basis function is presented. The convergence of the present method is studied for laminated plates 

with different shape parameters. After the proper convergence of present method several numerical examples of plates 

subjected to uniaxial and biaxial loading are under taken. The effect of an anisotropy ratio of material on critical 

buckling load of the plates is also reported with proper validation of present results with earlier published literature. 
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I. INTRODUCTION 

Laminated composite structures are used in many 

engineering applications such as aerospace, automotive, 

submarines, sports etc. The mathematical modeling of 

composite plates is an open discussion. The first order 

shear deformation proposed by Mindlin [1] and Reissner 

[2] considers the uniform transverse shear strain and stress 

over the plate thickness as compared to actual parabolic 

variation of transverse stress and strain, due to which it  

under predicts deflection, natural frequency and buckling 

loads. This theory suits well for thin plates, and can be 

applied to thick plates adding some stress correction 

factor. The higher order theory proposed by Reddy [3] is 

based on five unknowns of first order shear deformation 

theory but counts parabolic variation of transverse shear 

stress and strain, hence requirement of stress correction 

factor is eliminated.  

The researchers have employed several analytical and 

numerical techniques for solving partial differential 

equations of laminated plates and shells. In the past few 

years the meshless methods are being used by for the 

analysis of laminated composite structures. There are the  

 

 

many kind of mesh less methods like element free 

Galerkin method, meshless local Patrov-Galerkin etc. 

Radial basis function was applied by Xiang et al [4,5]  for 

linear flexural and free vibration analysis of the laminated 

composite and sandwich plates.  Castro et al [6] used 

wavelet collocations for static analysis of sandwich plates 

using layer wise theory. In the recent years Ferreira et al 

[7,8] used wavelets and Wendland radial basis function for 

buckling analysis of laminated composite plates. Liew and 

Huang [9] used moving least-squares differential 

quadrature for bending and buckling; Liew et al [10,11] 

used reproducing kernel approximations and meshfree 

method for buckling analysis of isotropic circular and 

skew plates. In the present paper multiquadrics radial basis 

function is used for buckling analysis of laminated 

composite and orthotropic plates subjected to uniaxial and 

biaxial loading.  

II. MULTIQUADRIC RADIAL BASIS FUNCTION 

METHOD 

Radial basis function based formulation works on the 

principle of interpolation of scattered data over entire 

domain. Consider a two dimensional domain having NB 
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boundary nodes and ND interior nodes. The variable u over 

the domain and boundary is interpolated in the form of 

radial basis function. Most commonly used radial basis 

functions are:  

rlogrg c2  
Logarithmic or thin plate spline  

 

rc2

eg   
Gaussian function 

crg   
c=1,2,3,4…       Polynomial 

function 

  2
1

22 crg   
Multiquadrics function 

  2
1

22 crg


  

Inverse multiquadrics function  

 

Where,     2j

2

jj yyxxXXr 
 

The radial basis functions solve the partial differential 

equations considering a scattered data over the domain.  In 

the present work multiquadrics radial basis function is 

used. The solution of the any differential equations is 

assumed in terms of radial basis function as; 

  



N

1j

j

u

j c,XXgu        (1.1) 

Where, N is total numbers of nodes which is equal to 

summation of boundary nodes NB and domain interior 

nodes ND.  c,XXg j  is radial basis function, 
u
j  is  

unknown coefficient. jXX   is the radial distance 

between two nodes.  

The given partial differential is expressed and boundary 

and interior nodes  

   ,XuXLu    Interior nodes (i = 1: ND) 

  ,0XBu    Boundary nodes (i = ND + 1: NB) 

In matrix form above equations are expressed as: 

   X
0

u
X

Bu

Lu

















                            (1.2) 

Where X is eigenvectors, L and B are the differential 

operator, u is the variable which is replaced by radial basis 

function. λ is eigenvalue and obtained by standard Eigen 

solvers of computational software.    

III. GOVERNING DIFFERENTIAL 

EQUATIONS AND ITS DISCRETIZATION 

A square plate having edge length a along x and y 

direction, thickness h along z direction made up of 

perfectly bonded laminas and subjected to in plane 

load Nxb Nyb and Nxyb is considered and mathematical 

formulation of the actual physical problem of the 

laminated composite plate subjected to mechanical 

loading is presented. The displacement field at any 

point in the laminated composite plate made up of 

perfectly bonded laminas of uniform thickness is 

expressed as: 

      xzf
x

w
zx,yux,y,z'u 





                                                         

      y

w
v' x, y,z v x, y z f z

y


   


    

   x,ywx,y'w 
    (2)

   
  

Where,   zhf z sin( )
h




   

is transverse shear stress 

function proposed by Tauratier [12]

 

and the parameters u', 

v' and w' are the in-plane and transverse displacements of 

the plate at any point (x, y, z) in x, y and z directions, 

respectively.  

 u, v and w are the displacements at mid plane of the plate 

at any point (x, y) in x, y and z directions, respectively.  

The functions x and  y  are the higher order rotations 

of the normal to the mid plane due to shear deformation 

about y and x axes, respectively.  

Combining the linear strain-displacement relations with 

assumed displacement field and using variational 

approach, the descretised GDEs of the plate are obtained 

and expressed as: 
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The boundary conditions for a simply supported edge are: 

0N:0M:0w:0:0u:b,0y

0N:0M:0w;0:0v:a,0x

yyx

xxy





 

 

IV. EIGEN VALUE BUCKLING ANALYSIS 

The discretized governing differential equation for the 

plate subjected to inplane loads is expressed as eigen value 

for predicting the critical buckling load  

       0δKNK GcrE   

Where KE is the stiffness matrix and KG is geometric 

stiffness matrix, Ncr is eigen value or critical buckling load 

V. RESULTS AND DISCUSSION 

The several numerical examples are solved for 

demonstration of accuracy of the present method. In the 

present work three and four layered cross ply laminated 

and single layered orthotropic plate subjected to uniaxial 

and biaxial compression are undertaken.     
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Figure 1: Convergence of present method for cross ply 

plate with different values of shape parameters 
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Figure 3: Effect of width to thickness ratio on critical 

buckling load of orthotropic plate subjected to uniaxial 

and biaxial loading 
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Figure 4: Effect of fibre orientation on critical buckling 

load of orthotropic plate subjected to uniaxial and biaxial 

loading 
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Figure 5: Effect of inplane shear on buckling load of 

simply supported symmetric cross ply plate subjected to 

uniaxial compression 

 

 

Table 1: Convergence studies of present method for 

critical buckling load of (0/90/0) cross ply plate subjected 

to uniaxial edge compression (a/h = 10) 
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Table 2: Effect of width to thickness ratio of an 

orthotropic plate on critical buckling load subjected to 

uniaxial and biaxial compression 

a/h Loading  Present Sundaresan 

[14] 

Reddy 

[15] 

4 Uniaxial 6.61550 -- ------- 

Biaxial 2.54870 -- -- 

10 Uniaxial 16.0657 15.8740 15.874 

Biaxial 5.93700 5.83720 5.8370 

20 Uniaxial 21.0418 -- 20.953 

Biaxial 7.59140 -- 7.5550 

50 Uniaxial 23.0906 -- -- 

Biaxial 8.25900 -- -- 

100 Uniaxial 23.4159 23.3817 23.381 

Biaxial 8.36220 8.36980 8.3690 

 

Table 3: Effect of anisotropic ratio on critical buckling 

load for symmetric cross ply plate subjected to uniaxial 

edge compression (a/h = 10) 

Laminate Orthotropic Ratio (E1/E2) 

3 10 20 30 40 

0/90/0 
5.4108 9.8956 15.0326 19.1227 22.4881 

0/90/90/0 
5.4161 10.025 15.5252 20.0520 23.8166 

 

Table 4: Effect of anisotropic ratio on critical buckling 

load for symmetric cross ply plate subjected to biaxial 

edge compression (a/h = 10) 

Laminate Orthotropic Ratio (E1/E2) 

3 10 20 30 40 

0/90/0 2.7056 4.9493 7.5220 8.9756 10.1973 

0/90/90/0 2.7083 5.0455 7.7929 10.0498 11.9452 

0.00 0.05 0.10 0.15 0.20

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

 

 

 

 , 

 , 

 , 

 , 

Thickness Ratio, h/a

B
u

c
k
lin

g
 P

a
ra

m
e

te
r,

 

Figure 6: Effect of inplane shear on buckling load of 

simply supported symmetric cross ply plate subjected to 

biaxial compression 

 

Convergence study: 

The square cross ply (0/90/0) moderately thick laminate 

composite plate subjected to uniaxial compression with 

simply supported edges is considered for convergence of 

the present method. The convergence is investigated for 

different values of shape parameters. The relative material 

properties of an orthotropic lamina are taken as 

E1/E2 = 3, 10, 20, 30, 40; G12 = G13 = 0.6E2; G23 = 0.5E2; ν 

= 0.25 

It is found that the present method is fast converging for 

greater value of shape parameters. The convergence is 

achieved for 17×17 domain nodes. The present 

multiquadrics results are compared with earlier published 

results by Reddy and Phan [13] and wavelets results of 

Ferreira et al [7]. It is observed that the present method 

produces the results with good accuracy and shown in 

Table 1 for different value of shape parameters and 

anisotropy ratio (E1/E2). Figures 1 and 2 shows 

convergence of present method with different values of 

shape parameter and orthotropy ratio E1/E2 of 10 and 3 

respectively. The results are presented in non dimensional 

form using expression:  
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crN
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Orthotropic plate: 

In this section square orthotropic plate having different 

values of length to thickness ratio subjected to uniaxial 

and biaxial compression with simply supported edges is 

considered. The relative material properties of an 

orthotropic lamina are taken as  

E1/E2 = 25; G12 = G13 = 0.5E2; G23 = 0.2E2; ν = 0.25 

Table 2 shows the critical buckling load factor for 

orthotropic plate subjected to uniaxial and biaxial loading. 

The present results are compared with earlier results of 

Reddy [15]; Sundaresan et al [14] and found accurate. 

The Figure 3 and 4 shows the effect of width to thickness 

ratio and fibre orientation on the critical buckling load 

factor of the plate as expected.  

Cross ply laminated composite plate: 

The three and four layered symmetric cross ply plates with 

simply supported edge subjected to uniaxial and biaxial 

compression is considered. The relative material properties 

of an orthotropic lamina are taken as 

E1/E2 = 3, 10, 20, 30, 40; G12 = G13 = 0.6E2; G23 = 0.5E2; 

 ν = 0.25 

Table 3 shows the critical buckling load factor for [0/90/0] 

and [0/90/90/0] cross ply moderately thick plates (a/h=10) 

subjected to uniaxial loading with different values of 

anisotropy ratio. It is observed that the present meshless 

method proved good accuracy for buckling analysis.  

Table 4 shows the critical buckling load factor of 

symmetric cross ply moderately thick plate subjected to 

biaxial loading with different values of anisotropy ratio.  

Figure 5 and 6 shows the effect on inplane shear load on 

the buckling parameter for cross ply plate subjected to 

uniaxial and biaxial loading for the material having 

orthotropic ratio E1/E2 of 40. The effect has been studied 

over the wide range of span to thickness ratio. It is 

observed that when value of inplane shear load is small 

say Nxy/Nx = 0.5 the effect on buckling parameter is 

observed to be negligible, where as when Nxy/Nx = 2 the 

buckling load factor is highly reduced. Further, the effect 

of in plane shear is more for thick plates as compare to 

thin plates.  

VI. CONCLUSION 

The buckling analysis of laminated composite and 

orthotropic plates using radial basis functions is presents. 

Both uniaxial and biaxial loading of the plates are under 

taken. The present results are compared several earlier 

published literature. The plate kinematics is based on the 

trigonometric shear deformation theory and eigen problem 

is defined in terms of radial basis function to compute the 

critical buckling loads. The present shows good accuracy 

and convergence for the plate problems. This method can 

be used as a new tool for the plate buckling analysis.  
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